Sparse Stable Matrices

نویسنده

  • Mohamed-Ali Belabbas
چکیده

In the design of decentralized networked systems, it is useful to know whether a given network topology can sustain stable dynamics. We consider a basic version of this problem here: given a vector space of sparse real matrices, does it contain a stable (Hurwitz) matrix? Said differently, is a feedback channel (corresponding to a non-zero entry) necessary for stabilization or can it be done without. We provide in this paper a set of necessary and a set of sufficient conditions for the existence of stable matrices in a vector space of sparse matrices. We further prove some properties of the set of sparse matrix spaces that contain Hurwitz matrices. The conditions we exhibit are most easily stated in the language of graph theory, which we thus adopt in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the stability of the LU factorization of Hessenberg matrices

In this paper we show that Doolittle’s method to compute the LU factorization of Hessenberg matrices is mixed forward-backward stable and therefore, componentwise forward stable. We also conjecture that this algorithm for computing the LU factorization of dense matrices is forward stable.

متن کامل

Sparse Signal Processing with Frame Theory

Many emerging applications involve sparse signals, and their processing is a subject of active research. We desire a large class of sensing matrices which allow the user to discern important properties of the measured sparse signal. Of particular interest are matrices with the restricted isometry property (RIP). RIP matrices are known to enable efficient and stable reconstruction of sufficientl...

متن کامل

Direct linear time solvers for sparse matrices

In the last couple of years it has been realized that Gaussian elimination for sparse matrices arising from certain elliptic PDEs can be done in O(n log(1/ )) flops, where n is the number of unknowns and is a user-specified tolerance [Chandrasekaran and Gu]. The resulting solver will also be backward stable with an error of O( ). The techniques used to achieve this speedup has some commonality ...

متن کامل

Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method

A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...

متن کامل

Random Subdictionaries and Coherence Conditions for Sparse Signal Recovery

The most frequently used condition for sampling matrices employed in compressive sampling is the restricted isometry (RIP) property of the matrix when restricted to sparse signals. At the same time, imposing this condition makes it difficult to find explicit matrices that support recovery of signals from sketches of the optimal (smallest possible) dimension. A number of attempts have been made ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1304.3478  شماره 

صفحات  -

تاریخ انتشار 2013